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On Two Methods for Approximating 
Minimal Surfaces in Parametric Form 

By Takuya Tsuchiya 

Abstract. Two methods for approximating minimal surfaces in parametric form are consid- 
ered. One minimizes the area of the surface, and the other the energy of the surface. The 
convergence of the algorithm of the first method is proved. The application of the second 
method to the approximation of conformal maps is examined. Several examples of computa- 
tions are given. 

1. Introduction. There are many papers studying numerical approximations of 
minimal surfaces but, as far as the author knows, most of them consider minimal 
surfaces in nonparametric form. In this paper we consider minimal surfaces in 
parametric form. 

Let R' (n > 2) be the n-dimensional Euclidean space, and let R2 D i be a 
bounded domain with the Lipschitz boundary a U. Rn D F = { y1,... Yiyn } is a 
system of m Jordan curves, which is homeomorphic to ai. Let PCx(u) be a set of 
piecewise smooth functions in Q, and C(Q2) be a set of continuous functions on Q. 
where Ki denotes the closure of the domain U. We define the functional space X as 
follows: 

(1 .1) X c [ PCO (Q) n C(Ki)] n, 

X:= { f: i -3 RWI f(au) = F, fI : monotone), 

where monotone means that the inverse image of each point of au is connected. The 
area functional A: X -+ R is defined by 

(1.2) A (f) |I Il ||y|(f t)ddy, 

where fx = (fix ., fn fy = (fy,. . .fny) and 1, (,) denote the Euclidean 
norm and inner product of RI, respectively. Here subscripts x and y mean partial 
derivatives with respect to x and y, respectively. 

A stationary point of the area functional A in X, even if it is not a minimal point 
of A, is called a minimal surface spanned in F. A minimal surface which is a 
minimal point of A is called a stable minimal surface. If a minimal surface is not 
stable, it is called an unstable minimal surface. It is well known that a map is a 
minimal surface if and only if its mean curvature is zero at any point on the surface 
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[8]. In the following section, we give an algorithm for approximating a stationary 
point of the functional A, and we demonstrate the convergence of the algorithm 
when the functional satisfies several conditions. 

From a physical point of view, if the potential energy of a surface is minimal, then 
the area of the surface will be minimal. In fact, the following holds. Let i be the 
unit disk, and let E be the energy functional defined by 

(1.3) E(t ):= 21 J~fl+fI xY. 

The minimum value of the energy functional is equal to that of the area functional. 
And if f E X attains the minimum value of the energy functional, f is a minimal 
surface and is (almost) conformal [1], [4]. 

In Section 3, we consider an approximation of stationary points of the energy 
functional and conformal maps. In Section 4, we give several numerical examples. 

2. The Discrete Area Functional and Its Minimization. Let Oh be a regular 

triangulation of Q and Sh be a set of maps from Oh into Rn which are continuous on 

Oh and are linear on each triangle. Let b be a suitable parameterization of F (i.e., b: 

aig -- F is a homeomorphism). Let Xh be the subset of Sh defined by 

(2.1) Xh:= {f Ah e Sh I Ah = b on nodal points of agh } . 

Note that for any f E X and any diffeomorphism qp: (Q, ai) -- (Q, ai), the area 
of f is invariant under the action of qp, that is, A (f ) = A (f o (p). So we may fix the 
parameterization of F. By the same reason, values of the area functional A(fh) 

(fh e Xh) depend only on the image of fh. 

With the usual basis representation for fh e Sh, our problem is reduced to the 
following: 

Problem. Find a stationary (minimal) point of a functional 

G(XlX2,...,XM): RM- R with xiERn (i = 1,...,M), 

where M is the number of interior nodal points of Oh. 

A minimal point of G corresponds to a stable minimal surface, and a stationary 
point which is not a stable point of G corresponds to an unstable minimal surface. 

To find stationary (minimal) points of G, one may use the usual relaxation 
method: 

G(xloo,,xm) = G(al,..,anM), ai E RI i=1.,nM, 

(2.2) aGkal)- ask)_ Ga(aik) 
I I 

.Gaiai~(a1,k)I 

where ai k = (a~k+l),. .. ai-I), ak), ... anM), and X is a relaxation parameter. 

The subscript ai means a partial derivative with respect to ai. 
However, since the area of the surface is invariant under the action of the 

diffeomorphism of Q, the derivative along the " tangent" of the surface is very small 
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and "0/0" will occur on the right side of (2.2). We therefore define a new relaxation 
method: 

x(k+l) = X(k) _ grad ,G(Xik) 

(2.3) 1 
Xi(Xi,k) 

= = (X~k+1) X(k+l) X(k) .X (k) 
Xi k I ... x * -1 x i x***x M x 

where gradi = (a/axij,... ,a/axin), xi = (xi1 ... ., xin), and Xi(xi, k) is the maxi- 
mum eigenvalue of the Hessian 

(2.4) Hi(Xik) (axhx~iG(Xik))I 

with respect to the ith vector xi. 
For the convergence of this algorithm, we have the following proposition. Proposi- 

tion 1 and its proof are a generalized version of Mittelmann's method in [7]. 
Suppose that the function G: RnM -+ R is bounded from below, twice continu- 

ously differentiable and G(x) - oo as IxI oo. For arbitrary x0 E RnM, we define 
the set X0 by RnM D XO:= { x E RnMIG(x) < G(xo)}. Then, by assumption, the set 
X0 is compact. 

PROPOSITION 1. Let Xi(x) be the maximum eigenvalue of the Hessian Hi(x) with 
respect to the ith vector xi, defined by (2.4). Assume that there exists a positive 
constant /3 > 0 such that XA(x) > /3 > 0 (i = 1, ..., M) for every x E X0. 

Then there exists a positive real number m such that if we choose a relaxation 
parameter Co(k) satisfying 

(2.5) 0 < (k) < 2(1 + m ;2 ) - 

where E is an arbitrary positive real number satisfying 

2(1+ MIadiGx) > > 0, 
xeXO \i(x) 

then the sequence defined by (2.3) converges to some x E X0 and x is a stationary 

point of G, that is, 

(2.6) gradiG(x) = O for i = 1, ..., M. 

Proof. First, we prove that G(xi+l k) = G(xik) if and only if gradiG(xik) = 0. It 
is obvious that gradiG(xik) = 0 implies G(xi+l k) = G(xik). We prove the inverse 
statement. 

For the function G(x), we use Taylor expansion around xik to obtain 

(i+lk) G(xik) + gradiG(xi k) I(Xi+l-X) ) 

(2.7) + 2(xkk+l)- x (k)) THi()(Xik+?l)- x-k) 

where Hi(() is the Hessian with respect to the ith vector, ( = Xik + T(Xi+lk - Xi k) 

0 < T < 1, and (.)T means transposition. 
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For simplicity, we denote gradiG(xi k)/Xi(xi k), Hi(() and xik+l) - xik) by t(k), 

H and x, respectively. 
Since H is a symmetric matrix, there exists an orthogonal matrix P such that 

H=pT .. 0] 
O yn 

where , (j = 1, . . . , n) are eigenvalues of the matrix H. From the definition of X 
we have 

1 ~~0 
x THx = (PX) T (Px) 

T~ =n 

= Al + ... +,n(Px) _ XiPx12 =i, x 12, 

where (Px)j is the jth component of the vector Px. By means of (2.7), we have 

(2.8) G(Xi+lk) -G(xik) 
< 

-k)It Ik)I i(xik)(1 - 2 ) 

+ l()2tik~ I A( - Xi(Xisk))- 

Since G is of C2-class and X0 is compact, we can choose a positive constant m 
satisfying 

if LY - Xik)I < 2Itik)I, I y' Xik) e XO 

then jXi(y) (X(xk))| mltik)I, for any i. 

Since 1t - XikI = TXi+lk - Xikl = Tc k)jt( k)j < 2It~I 1, by (2.8), we obtain 

(2.9(X i+) G(x1,k) - G(Xk) 
- 

k)IItk)(1 - 
2k) 

+ 
) 

0. 

Then, G(x(k)) is decreasing in k, and G(xi+l k) = G(xi, k) implies gradiG(xi k) = 

0. 

By assumption, G is bounded from below, so G(x(k)) converges to some value. By 
(2.5), we have 

k (G(xik) - G(xi+l k)) >Ix Xk?1)-x(ik)( 1 I 
- + 

> Xk+l)- xk)I> 

Hence, we obtain the following inequality, 

4 
O Ix~k+ 1)_ xik) I < -(G(xik) -G(xi+l,k))- 

This implies that if G(x(k)) converges, so does x(k). At the limit point, G is 
stationary. 5 
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Remark 1. When G is the discrete area functional, it can occur that G does not 
satisfy the condition of Proposition 1. Then, the relaxation procedure will stop at the 
step where Xi(xi k) in (2.3) is too small. See Example 1. 0 

3. The Classical Plateau Problem and Its Approximation. In this section, we 
assume that 92 c R2 is a bounded, 1-connected domain with the Lipschitz boundary 
ag. So r = { -y }, and y1 is homeomorphic to the 1-dimensional unit sphere. In this 
case, the problem of finding minimal surfaces spanned in r is called the classical 
Plateau problem. The classical Plateau problem was solved by Douglas and Rado in 
1930 [1], [4]. Here, we formulate the classical Plateau problem as follows: 

Taking arbitrary six distinct points zj, z2, z3 E a and t r' 3 E F, we define 

(3.1) X':= {f E XIfzi) = hi, i = 1,2,3}. 

The classical Plateau problem is to find f E X' which is a stationary point of the 
energy functional E in X'. It is known that a solution of the classical Plateau 
problem is a minimal surface spanned in r and is (almost) conformal, that is, 
Ifxj = IfyI and (f, fy) = 0 in D [1, pp. 107-118]. In particular, if f is a minimal 
point of E in X', then f is a minimal surface spanned in r. Douglas and Rado 
proved the following theorem: 

THEOREM A (DOUGLAS, RADO). If Er = inf{E(g): g e X'} < + oo, then there 
exists f e X' such that E(f) = Er. 

Hence there exists at least one minimal surface in X' for "good" r. We can show 
immediately that if r is rectifiable, then Er < + oo [1, pp. 9-10 and p. 129]. An 
f E X' satisfying E(f) = Er is called the classical solution or the Douglas-Rado 
solution. 

Remark 2. When n = 2, we can prove immediately that the Douglas-Rado 
solution is conformal [4, p. 71]. Then Theorem A is the Riemann Mapping Theorem 
for domains bounded by Jordan curves. 0 

The proof of Theorem A tells us that to find a solution of the classical Plateau 
problem we must find the optimal parameterization of r. Thus, when we consider 
the minimization of the discrete energy functional, we must move not only interior 
nodal points in RW but also boundary nodal points on r, except for three points. We 
discretize the problem as follows. 

First, we determine three fixed points z1, Z2, Z3 on ag and corresponding fixed 
points t1, t2, t3 on F. Let .h be a regular triangulation of a such that zj, Z2, Z3 are 
nodal points of Uh' and let Nh be the set of nodal points. Let Sh be a set of maps 
from Rh into RW which are continuous on oh and are linear on each triangle. We 
define functional spaces Xh, Xh by 

(3.2) Xh {fh E Sh Afh((h n Nh) C r, fh IvhfN:h d-monotone}, 

(3.3) Xh = {f h E Xh I f (zi) = ai = 1, 23}, 

where d-monotone means that the order of nodal points fA(A2 n Nh) on r is the 
same as the order of nodal points on the boundary of oh* 
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With the usual basis representation for f e Sh and a parameterization of F, the 
energy functional E is reduced to a functional H(x1, . . ., XmM, XnM+ 1 * *, XnM+ N): 
RnM+N Rwith-oo <xi< +oo fori= ,...,nM andw, 1XnM+1 < * W2 

.. * * W3 * XnM+ < W1 + 2g, where w1, w2, w3 are constants corre- 
sponding to the given fixed points t1, t2, t3. We look for stationary points fh E Xh 

of H, that is, grad H(fh) = 0. 

FIGURE 1 
The finite element scheme for the energy functional. 

"0 " is a fixed nodal point. 
"A" is a boundary nodal point moving on F. 

"*" is an interior nodal point moving n-dimensionally. 

As relaxation procedure we may use the usual one, (2.2). 

4. Numerical Examples. In this section, we give several numerical examples. 
Example 1. Catenoid. Let f(x) = cosh(a(x - c))/a, 0 < x < 1. The constants a 

and c are determined by the boundary conditions. Rotating the graph of y = f(x) 
around the x-axis, we get a catenoid, which is known as an example of a minimal 
surface. Now we set f(O) = f(1) = r, where r is a given constant. Then c = 0.5, and 
the constant a is determined by the equation cosh(a/2) = ar. If r is smaller than a 
certain constant, this equation has no real solutions. The critical value is ro = 0.75444. 

The initial data for the relaxation are cylindrical ones. We denote by a the right 
side of (2.5). The relaxation parameter w is 1.2 when a > 1.3 and a X 0.923 when 
a < 1.3. 

In Table 1, we give iteration numbers, distances between a numerical solution and 
the x-axis and its exact value for a given r. The iterations were terminated when 
max xIk) -xk-l)j < 10-5. As r approaches the critical value ro, the iteration 
number is increasing. We give the numerical solution for r = 0.756 in Figure 2. 

When r < 0.755, the minimizing surface collapses, and, at some step of the 
iteration, the relaxation procedure cannot continue, since Xi(xi k) in (2.3) becomes 
very small. The iteration was terminated when Xi(xik) < 10-20. In Table 2, we give 
numbers of iterations at which termination occurred. 
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TABLE 1 
Results of computations for Catenoid 

r. count X distance exact value 

1.0 234 0.50142 0.84762 0.84834 
0.9 272 0.50178 0.71807 0.71904 
0.8 395 0.50234 0.56122 0.56299 
0.79 429 0.50241 0.54117 0.54314 
0.78 479 0.50250 0.51894 0.52121 
0.77 560 0.50259 0.49299 0.49574 
0.76 790 0.50268 0.45757 0.46190 
0.757 1037 0.50267 0.44036 0.44675 
0.756 1272 0.50264 0.43126 0.43994 

FIGURE 2 
Catenoid, r = 0.756. 

TABLE 2 
Iteration numbers 

r count 

0.7 462 
0.74 899 
0.75 1340 
0.752 1586 
0.753 1840 
0.754 2302 
0.755 3448 
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As r approaches the critical value, the speed of "convergence" decreases. Figure 3 
is the collapsed surface for r = 0.755. 

Example 2. Courant's Example. We take a contour like Figure 4. This is an 
interesting example, because there are two different minimal surfaces in this contour 
[1, p. 120]. This example was examined in [3]. 

FIGuRE 3 
Collapsed catenoid, r = 0.755. 

x~~~ 

X 
FIGuRE 4 

The contour for Example 2. 
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Figures 5 and 6 are the results of computations. 
Example 3. Minimal Surfaces in a Knot. We approximate minimal surfaces 

spanned in a knot. The contour is x = (1 + 0.25 cos 30)cos 20, y = 
(1 + 0.25 cos 30)sin 20, z = 0.25 sin 30, 0 S 0 < 2 v. We compute a stationary point 
of the energy functional. Figure 7 is the result. The area is 6.7424374 and the energy 
is 6.7685022. 

FIouimu 5 

FIouiuE 6 
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This surface is not necessarily a minimal point of E. It is known that, if there exist 

two stable minimal surfaces spanned in F, then there exists an unstable minimal 

surface spanned in F [1, pp. 223-243]. 
This surface has a branch point. Thus, this is not the Douglas-Rado solution, 

because the Douglas-Rado solution does not have any branch point when n = 3 [4, 

p. 80]. 
We remark that the relaxation procedure of the discrete area functional using the 

algorithm (2.3) with this surface as initial data is terminated in several iterations. 
Figure 8 is another result with a contour x = (1 + 0.15 cos 6)cos 26, y = 

(1 + 0.15 cos O)sin 20, z = 0.15 sin@, 0 < 6 < 27r. The area is 6.3725386 and the 

energy is 6.3873806. 

FIGURE 7 

The surface which attains the minimal value of the 

energy functional. The contour is a "clover knot ". 

The energy is 6.7685022. The area is 6.7424374. 

FIGURE 8 

Another result of Example 3. The contour is a twisted 

knot. The energy is 6.3873806. The area is 6.3725386. 
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Example 4. Conformal Maps. Let n = 2. We approximate conformal maps from a 
hexagon into bounded, 1-connected domains. The contours are given by x = 

(1 + R cos 3O)cos 0, y = (1 + R cos 3O)sin 0, 0 S 6 S 27r. The minimum value of 
the energy is the area of the domain surrounded by the contour, and in this case, the 
value is 7r(1 + R2/2). Figure 9 is a triangulation of the hexagon, the Figures 10 and 
11 are the results for R = 0 and R = 0.5, respectively. 

All computations were carried out using the FACOM M382 computer system at 
the Computer Center, Kyushu University. 

FIGURE~ 9 
Triangulation of hexagon. 

FIGURuE 10 
R = .0. The energy is 3.1407843. 
The exact value of the energy is 3.1415926. 
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FIGURE 11 

R = 0.5. The energy is 3.5237980. 
The exact value of the energy is 3.5342917. 

5. Conclusions. We examined two methods for approximating minimal surfaces in 
parametric form. Numerical examples presented here show that these methods have 
sufficient accuracy from a practical point of view. 

In this paper, we have not given the error analysis of these methods. Since the area 
of a surface is invariant under the action of a diffeomorphism of 9, the error 
analysis of the discrete area functional will be very difficult. Some results about the 
convergence of the discrete solutions of the classical Plateau problem will be given 
elsewhere by the author. 
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